Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
PLoS Comput Biol ; 18(7): e1010164, 2022 07.
Article in English | MEDLINE | ID: covidwho-1951511

ABSTRACT

Conferences are spaces to meet and network within and across academic and technical fields, learn about new advances, and share our work. They can help define career paths and create long-lasting collaborations and opportunities. However, these opportunities are not equal for all. This article introduces 10 simple rules to host an inclusive conference based on the authors' recent experience organizing the 2021 edition of the useR! statistical computing conference, which attracted a broad range of participants from academia, industry, government, and the nonprofit sector. Coming from different backgrounds, career stages, and even continents, we embraced the challenge of organizing a high-quality virtual conference in the context of the Coronavirus Disease 2019 (COVID-19) pandemic and making it a kind, inclusive, and accessible experience for as many people as possible. The rules result from our lessons learned before, during, and after the organization of the conference. They have been written mainly for potential organizers and selection committees of conferences and contain multiple practical tips to help a variety of events become more accessible and inclusive. We see this as a starting point for conversations and efforts towards building more inclusive conferences across the world. * Translated versions of the English abstract and the list of rules are available in 10 languages in S1 Text: Arabic, French, German, Italian, Japanese, Korean, Portuguese, Spanish, Tamil, and Thai.


Subject(s)
COVID-19 , COVID-19/epidemiology , Humans , India , Italy , Pandemics , Writing
2.
Atmospheric Environment ; : 119164, 2022.
Article in English | ScienceDirect | ID: covidwho-1850683

ABSTRACT

The mathematical solution to estimate surface fine particulate matter (PM2.5) from columnar aerosol optical depth (AOD) includes complex variables and involves a bunch of assumptions. Hence, researchers tend to use training-based models to predict PM2.5 from AOD. Here, we integrated regulatory composite PM2.5 measurements, high-resolution satellite AOD, reanalysis meteorological parameters, and a few other auxiliary parameters to train ten different regression models. The performance of these (seven statistical and three machine learning) models was evaluated and inter-compared to identify the best performing model. The accuracies of the model predicted PM2.5 were quantified based on the coefficient of determination (R2), mean absolute bias (MAB), normalized root mean square error (NRMSE), and other relevant regression coefficients. The model's performance on unseen data was investigated in terms of 10-fold cross-validation (CV) and Leave-one station-out CV (LOOCV). For this exercise, we considered the case of NCT-Delhi due to: (i) the availability of dense regulatory PM2.5 measurements, (ii) the possibility of understanding the model performance over a large range of PM2.5 (the daily mean PM2.5 values ranged between ∼ 4 and 492 μg m−3 during the study period), and (iii) the scope of better understanding the influence of extreme meteorological conditions (e.g. the ambient surface temperature varies between ∼5 and 40 °C during a calendar year) on the AOD-PM2.5 relationship. All the models were trained using data collected for the year 2019 (a non-COVID year). Among models under investigation, Machine Learning (ML) models performed better with R2, MAB, and NRMSE values for the CV exercises ranging between 0.88 and 0.93, 14.1 and 18.2 μg m−3, and 0.18 and 0.23, respectively. The generalizability of the results obtained in this study was discussed.

3.
Adv Space Res ; 67(7): 2140-2150, 2021 Apr 01.
Article in English | MEDLINE | ID: covidwho-1039283

ABSTRACT

Leveraging the COVID-19 India-wide lockdown situation, the present study attempts to quantify the reduction in the ambient fine particulate matter concentrations during the lockdown (compared with that of the pre-lockdown period), owing to the highly reduced specific anthropogenic activities and thereby pollutant emissions. The study was conducted over Bengaluru (India), using PM2.5 (mass concentration of particulate matter having size less than or equal to 2.5 µm) and Black Carbon mass concentration (BC) data. Open-access datasets from pollution control board (PCB) were also utilised to understand the spatial variability and region-specific reduction in PM2.5 across the city. The highest percentage reduction was observed in BCff (black carbon attributable to fossil fuel combustion), followed by total BC and PM2.5. No decrease in BCbb (black carbon attributable to wood/biomass burning) was observed, suggesting unaltered wood-based cooking activities and biomass-burning (local/regional) throughout the study period. Results support the general understanding of multi-source (natural and anthropogenic) nature of PM2.5 in contrast to limited-source (combustion based) nature of BC. The diurnal amplitudes in BC and BCff were reduced, while they remained almost the same for PM2.5 and BCbb. Analysis of PCB data reveal the highest reduction in PM2.5 in an industrial cluster area. The current lockdown situation acted as a natural model to understand the role of a few major anthropogenic activities (viz., traffic, construction, industries related to non-essential goods, etc.) in enhancing the background fine particulate matter levels. Contemporary studies reporting reduction in surface fine particulate matter and satellite retrieved columnar Aerosol Optical Depth (AOD) during COVID-19 lockdown period are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL